Domain Adaption Based on Symmetric Matrices Space Bi-Subspace Learning and Source Linear Discriminant Analysis Regularization
At present, Symmetric Positive Definite (SPD) matrix data is the most common non-Euclidean data in machine learning. Because SPD data don’t form a linear space, most machine learning algorithms can not be carried out directly on SPD data. The first purpose of this paper is to propose a ne...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4dfa2953c2e244aa9f43b97d25fac455 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|