Domain Adaption Based on Symmetric Matrices Space Bi-Subspace Learning and Source Linear Discriminant Analysis Regularization
At present, Symmetric Positive Definite (SPD) matrix data is the most common non-Euclidean data in machine learning. Because SPD data don’t form a linear space, most machine learning algorithms can not be carried out directly on SPD data. The first purpose of this paper is to propose a ne...
Guardado en:
Autores principales: | Qian Li, Zhengming Ma, Shuyu Liu, Yanli Pei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4dfa2953c2e244aa9f43b97d25fac455 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EEG Mental Recognition Based on RKHS Learning and Source Dictionary Regularized RKHS Subspace Learning
por: Wenjie Lei, et al.
Publicado: (2021) -
On Weak concircular Symmetries of Trans-Sasakian manifolds
por: Hui,Shyamal Kumar
Publicado: (2011) -
Anti-invariant ξ ⊥ -Riemannian Submersions From Hyperbolic β-Kenmotsu Manifolds
por: Danish Siddiqi,Mohd, et al.
Publicado: (2018) -
Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
por: Xiang Hu, et al.
Publicado: (2021) -
ON WEAK CONCIRCULAR SYMMETRIES OF LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS
por: Narain,Dhruwa, et al.
Publicado: (2013)