BABEL: using deep learning to translate between single-cell datasets
Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality....
Enregistré dans:
Auteur principal: | George Andrew S. Inglis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4e0b2ba8f4ed4bae8a12fec4eec6f3c5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Cell-level metadata are indispensable for documenting single-cell sequencing datasets.
par: Sidhant Puntambekar, et autres
Publié: (2021) -
Bacteria in tree bark are hungry for methane
par: George Andrew S. Inglis
Publié: (2021) -
Shrinking the metabolic solution space using experimental datasets.
par: Jennifer L Reed
Publié: (2012) -
The in vitro micronucleus assay using imaging flow cytometry and deep learning
par: Matthew A. Rodrigues, et autres
Publié: (2021) -
DeepG4: A deep learning approach to predict cell-type specific active G-quadruplex regions.
par: Vincent Rocher, et autres
Publié: (2021)