Approximate distance correlation for selecting highly interrelated genes across datasets
With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Mor...
Saved in:
Main Authors: | Qunlun Shen, Shihua Zhang |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/4e466ea68f9f4bc4aed5a9e8d1d109c5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Approximate distance correlation for selecting highly interrelated genes across datasets.
by: Qunlun Shen, et al.
Published: (2021) -
Approximate Bayesian computation.
by: Mikael Sunnåker, et al.
Published: (2013) -
Prioritizing and characterizing functionally relevant genes across human tissues.
by: Gowthami Somepalli, et al.
Published: (2021) -
Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens
by: Rong Xiang, et al.
Published: (2021) -
A mixture of delta-rules approximation to bayesian inference in change-point problems.
by: Robert C Wilson, et al.
Published: (2013)