Giant persistent photoconductivity in monolayer MoS2 field-effect transistors

Abstract Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. George, M. V. Fistul, M. Gruenewald, D. Kaiser, T. Lehnert, R. Mupparapu, C. Neumann, U. Hübner, M. Schaal, N. Masurkar, L. M. R. Arava, I. Staude, U. Kaiser, T. Fritz, A. Turchanin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/4ea6875eed2f449a9ee535e70f143782
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4ea6875eed2f449a9ee535e70f143782
record_format dspace
spelling oai:doaj.org-article:4ea6875eed2f449a9ee535e70f1437822021-12-02T15:59:41ZGiant persistent photoconductivity in monolayer MoS2 field-effect transistors10.1038/s41699-020-00182-02397-7132https://doaj.org/article/4ea6875eed2f449a9ee535e70f1437822021-01-01T00:00:00Zhttps://doi.org/10.1038/s41699-020-00182-0https://doaj.org/toc/2397-7132Abstract Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.A. GeorgeM. V. FistulM. GruenewaldD. KaiserT. LehnertR. MupparapuC. NeumannU. HübnerM. SchaalN. MasurkarL. M. R. AravaI. StaudeU. KaiserT. FritzA. TurchaninNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 5, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
A. George
M. V. Fistul
M. Gruenewald
D. Kaiser
T. Lehnert
R. Mupparapu
C. Neumann
U. Hübner
M. Schaal
N. Masurkar
L. M. R. Arava
I. Staude
U. Kaiser
T. Fritz
A. Turchanin
Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
description Abstract Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.
format article
author A. George
M. V. Fistul
M. Gruenewald
D. Kaiser
T. Lehnert
R. Mupparapu
C. Neumann
U. Hübner
M. Schaal
N. Masurkar
L. M. R. Arava
I. Staude
U. Kaiser
T. Fritz
A. Turchanin
author_facet A. George
M. V. Fistul
M. Gruenewald
D. Kaiser
T. Lehnert
R. Mupparapu
C. Neumann
U. Hübner
M. Schaal
N. Masurkar
L. M. R. Arava
I. Staude
U. Kaiser
T. Fritz
A. Turchanin
author_sort A. George
title Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
title_short Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
title_full Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
title_fullStr Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
title_full_unstemmed Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
title_sort giant persistent photoconductivity in monolayer mos2 field-effect transistors
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4ea6875eed2f449a9ee535e70f143782
work_keys_str_mv AT ageorge giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT mvfistul giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT mgruenewald giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT dkaiser giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT tlehnert giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT rmupparapu giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT cneumann giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT uhubner giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT mschaal giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT nmasurkar giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT lmrarava giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT istaude giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT ukaiser giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT tfritz giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
AT aturchanin giantpersistentphotoconductivityinmonolayermos2fieldeffecttransistors
_version_ 1718385327780921344