Deep learning for visualization and novelty detection in large X-ray diffraction datasets

Abstract We apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lars Banko, Phillip M. Maffettone, Dennis Naujoks, Daniel Olds, Alfred Ludwig
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/4ea8036e8fad48a79945a01a82db4935
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!