Deep learning for visualization and novelty detection in large X-ray diffraction datasets
Abstract We apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns....
Guardado en:
Autores principales: | Lars Banko, Phillip M. Maffettone, Dennis Naujoks, Daniel Olds, Alfred Ludwig |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ea8036e8fad48a79945a01a82db4935 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
por: Bruce Lim, et al.
Publicado: (2021) -
Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries
por: Yuma Iwasaki, et al.
Publicado: (2017) -
Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning
por: Leslie Ching Ow Tiong, et al.
Publicado: (2020) -
A deep convolutional neural network for real-time full profile analysis of big powder diffraction data
por: Hongyang Dong, et al.
Publicado: (2021) -
Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
por: Ziteng Liu, et al.
Publicado: (2021)