Deep learning for visualization and novelty detection in large X-ray diffraction datasets

Abstract We apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns....

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lars Banko, Phillip M. Maffettone, Dennis Naujoks, Daniel Olds, Alfred Ludwig
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/4ea8036e8fad48a79945a01a82db4935
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!