Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology.
Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately bui...
Enregistré dans:
Auteurs principaux: | Kun-Yi Hsin, Samik Ghosh, Hiroaki Kitano |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4f097faf2dc64a90b8ac8a8ebc857a98 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Combining Network Pharmacology with Molecular Docking for Mechanistic Research on Thyroid Dysfunction Caused by Polybrominated Diphenyl Ethers and Their Metabolites
par: Qiaoyu He, et autres
Publié: (2021) -
V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization
par: Jieun Choi, et autres
Publié: (2021) -
Exploring the Underlying Mechanism of Shenyankangfu Tablet in the Treatment of Glomerulonephritis Through Network Pharmacology, Machine Learning, Molecular Docking, and Experimental Validation
par: Jin M, et autres
Publié: (2021) -
Mechanism of Tongxie Yaofang in the treatment of colorectal cancer based on network pharmacology and molecular docking
par: Ling-Xia Yang, et autres
Publié: (2021) -
DOCKING DE CICLOARTANOS INHIBIDORES DE TIROSINASA DOCKING OF TYROSINASE CICLOARTANE INHIBITORS
par: Pablo A GUTIÉRREZ, et autres
Publié: (2009)