Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f3a3407855745988954321965d01387 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4f3a3407855745988954321965d01387 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4f3a3407855745988954321965d013872021-12-02T17:32:46ZModeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates10.1038/s41467-018-07649-12041-1723https://doaj.org/article/4f3a3407855745988954321965d013872018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07649-1https://doaj.org/toc/2041-1723The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains.David HeckmannDaniel C. ZielinskiBernhard O. PalssonNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q David Heckmann Daniel C. Zielinski Bernhard O. Palsson Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
description |
The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains. |
format |
article |
author |
David Heckmann Daniel C. Zielinski Bernhard O. Palsson |
author_facet |
David Heckmann Daniel C. Zielinski Bernhard O. Palsson |
author_sort |
David Heckmann |
title |
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
title_short |
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
title_full |
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
title_fullStr |
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
title_full_unstemmed |
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
title_sort |
modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/4f3a3407855745988954321965d01387 |
work_keys_str_mv |
AT davidheckmann modelinggenomewideenzymeevolutionpredictsstrongepistasisunderlyingcatalyticturnoverrates AT danielczielinski modelinggenomewideenzymeevolutionpredictsstrongepistasisunderlyingcatalyticturnoverrates AT bernhardopalsson modelinggenomewideenzymeevolutionpredictsstrongepistasisunderlyingcatalyticturnoverrates |
_version_ |
1718380184271323136 |