Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates

The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains.

Guardado en:
Detalles Bibliográficos
Autores principales: David Heckmann, Daniel C. Zielinski, Bernhard O. Palsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/4f3a3407855745988954321965d01387
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4f3a3407855745988954321965d01387
record_format dspace
spelling oai:doaj.org-article:4f3a3407855745988954321965d013872021-12-02T17:32:46ZModeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates10.1038/s41467-018-07649-12041-1723https://doaj.org/article/4f3a3407855745988954321965d013872018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07649-1https://doaj.org/toc/2041-1723The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains.David HeckmannDaniel C. ZielinskiBernhard O. PalssonNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
David Heckmann
Daniel C. Zielinski
Bernhard O. Palsson
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
description The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains.
format article
author David Heckmann
Daniel C. Zielinski
Bernhard O. Palsson
author_facet David Heckmann
Daniel C. Zielinski
Bernhard O. Palsson
author_sort David Heckmann
title Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
title_short Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
title_full Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
title_fullStr Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
title_full_unstemmed Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
title_sort modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4f3a3407855745988954321965d01387
work_keys_str_mv AT davidheckmann modelinggenomewideenzymeevolutionpredictsstrongepistasisunderlyingcatalyticturnoverrates
AT danielczielinski modelinggenomewideenzymeevolutionpredictsstrongepistasisunderlyingcatalyticturnoverrates
AT bernhardopalsson modelinggenomewideenzymeevolutionpredictsstrongepistasisunderlyingcatalyticturnoverrates
_version_ 1718380184271323136