Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
The catalytic efficiency of many enzymes is lower than the theoretical maximum. Here, the authors combine genome-scale metabolic modeling with population genetics models to simulate enzyme evolution, and find that strong epistasis limits turnover numbers due to diminishing returns of fitness gains.
Guardado en:
Autores principales: | David Heckmann, Daniel C. Zielinski, Bernhard O. Palsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4f3a3407855745988954321965d01387 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
por: David Heckmann, et al.
Publicado: (2018) -
Characterisation of genome-wide association epistasis signals for serum uric acid in human population isolates.
por: Wenhua Wei, et al.
Publicado: (2011) -
The adaptive landscape of a metallo-enzyme is shaped by environment-dependent epistasis
por: Dave W. Anderson, et al.
Publicado: (2021) -
Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance
por: Marta Lukačišinová, et al.
Publicado: (2020) -
An atlas of protein turnover rates in mouse tissues
por: Zach Rolfs, et al.
Publicado: (2021)