Deep generative neural network for accurate drug response imputation
Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors an...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4fb77b5018df4b45a1a0baa6a40058e4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4fb77b5018df4b45a1a0baa6a40058e42021-12-02T17:04:52ZDeep generative neural network for accurate drug response imputation10.1038/s41467-021-21997-52041-1723https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e42021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21997-5https://doaj.org/toc/2041-1723Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors and accurately impute drug response.Peilin JiaRuifeng HuGuangsheng PeiYulin DaiYin-Ying WangZhongming ZhaoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Peilin Jia Ruifeng Hu Guangsheng Pei Yulin Dai Yin-Ying Wang Zhongming Zhao Deep generative neural network for accurate drug response imputation |
description |
Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors and accurately impute drug response. |
format |
article |
author |
Peilin Jia Ruifeng Hu Guangsheng Pei Yulin Dai Yin-Ying Wang Zhongming Zhao |
author_facet |
Peilin Jia Ruifeng Hu Guangsheng Pei Yulin Dai Yin-Ying Wang Zhongming Zhao |
author_sort |
Peilin Jia |
title |
Deep generative neural network for accurate drug response imputation |
title_short |
Deep generative neural network for accurate drug response imputation |
title_full |
Deep generative neural network for accurate drug response imputation |
title_fullStr |
Deep generative neural network for accurate drug response imputation |
title_full_unstemmed |
Deep generative neural network for accurate drug response imputation |
title_sort |
deep generative neural network for accurate drug response imputation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e4 |
work_keys_str_mv |
AT peilinjia deepgenerativeneuralnetworkforaccuratedrugresponseimputation AT ruifenghu deepgenerativeneuralnetworkforaccuratedrugresponseimputation AT guangshengpei deepgenerativeneuralnetworkforaccuratedrugresponseimputation AT yulindai deepgenerativeneuralnetworkforaccuratedrugresponseimputation AT yinyingwang deepgenerativeneuralnetworkforaccuratedrugresponseimputation AT zhongmingzhao deepgenerativeneuralnetworkforaccuratedrugresponseimputation |
_version_ |
1718381790430756864 |