Deep generative neural network for accurate drug response imputation

Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peilin Jia, Ruifeng Hu, Guangsheng Pei, Yulin Dai, Yin-Ying Wang, Zhongming Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4fb77b5018df4b45a1a0baa6a40058e4
record_format dspace
spelling oai:doaj.org-article:4fb77b5018df4b45a1a0baa6a40058e42021-12-02T17:04:52ZDeep generative neural network for accurate drug response imputation10.1038/s41467-021-21997-52041-1723https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e42021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21997-5https://doaj.org/toc/2041-1723Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors and accurately impute drug response.Peilin JiaRuifeng HuGuangsheng PeiYulin DaiYin-Ying WangZhongming ZhaoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Peilin Jia
Ruifeng Hu
Guangsheng Pei
Yulin Dai
Yin-Ying Wang
Zhongming Zhao
Deep generative neural network for accurate drug response imputation
description Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors and accurately impute drug response.
format article
author Peilin Jia
Ruifeng Hu
Guangsheng Pei
Yulin Dai
Yin-Ying Wang
Zhongming Zhao
author_facet Peilin Jia
Ruifeng Hu
Guangsheng Pei
Yulin Dai
Yin-Ying Wang
Zhongming Zhao
author_sort Peilin Jia
title Deep generative neural network for accurate drug response imputation
title_short Deep generative neural network for accurate drug response imputation
title_full Deep generative neural network for accurate drug response imputation
title_fullStr Deep generative neural network for accurate drug response imputation
title_full_unstemmed Deep generative neural network for accurate drug response imputation
title_sort deep generative neural network for accurate drug response imputation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e4
work_keys_str_mv AT peilinjia deepgenerativeneuralnetworkforaccuratedrugresponseimputation
AT ruifenghu deepgenerativeneuralnetworkforaccuratedrugresponseimputation
AT guangshengpei deepgenerativeneuralnetworkforaccuratedrugresponseimputation
AT yulindai deepgenerativeneuralnetworkforaccuratedrugresponseimputation
AT yinyingwang deepgenerativeneuralnetworkforaccuratedrugresponseimputation
AT zhongmingzhao deepgenerativeneuralnetworkforaccuratedrugresponseimputation
_version_ 1718381790430756864