Deep generative neural network for accurate drug response imputation
Drug response in cancer patients vary dramatically due to inter- and intra-tumor heterogeneity and transcriptome context plays a significant role in shaping the actual treatment outcome. Here, the authors develop a deep variational autoencoder model to compress gene signatures into latent vectors an...
Enregistré dans:
Auteurs principaux: | Peilin Jia, Ruifeng Hu, Guangsheng Pei, Yulin Dai, Yin-Ying Wang, Zhongming Zhao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4fb77b5018df4b45a1a0baa6a40058e4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Surface protein imputation from single cell transcriptomes by deep neural networks
par: Zilu Zhou, et autres
Publié: (2020) -
Accurate imputation of human leukocyte antigens with CookHLA
par: Seungho Cook, et autres
Publié: (2021) -
Deep neural networks for accurate predictions of crystal stability
par: Weike Ye, et autres
Publié: (2018) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
par: Wei Vivian Li, et autres
Publié: (2018) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
par: Taesung Kim, et autres
Publié: (2021)