Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats
Chemical engineers rely on models for design, research, and daily decision-making, often with potentially large financial and safety implications. Previous efforts a few decades ago to combine artificial intelligence and chemical engineering for modeling were unable to fulfill the expectations. In t...
Guardado en:
Autores principales: | Maarten R. Dobbelaere, Pieter P. Plehiers, Ruben Van de Vijver, Christian V. Stevens, Kevin M. Van Geem |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5297e32d3e9d477d95ca985730c8e9e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Classification of Enciphered SCADA Network Traffic in Smart Factory Using Decision Tree Algorithm
por: Love Allen Chijioke Ahakonye, et al.
Publicado: (2021) -
Forecasting the discharge capacity of inflatable rubber dams using hybrid machine learning models
por: Wenyu Zheng, et al.
Publicado: (2021) -
Design of Smart Unstaffed Retail Shop Based on IoT and Artificial Intelligence
por: Jianqiang Xu, et al.
Publicado: (2020) -
aiSTROM–A Roadmap for Developing a Successful AI Strategy
por: Dorien Herremans
Publicado: (2021) -
Practical Aspects of the Design and Use of the Artificial Neural Networks in Materials Engineering
por: Wojciech Sitek, et al.
Publicado: (2021)