Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats
Chemical engineers rely on models for design, research, and daily decision-making, often with potentially large financial and safety implications. Previous efforts a few decades ago to combine artificial intelligence and chemical engineering for modeling were unable to fulfill the expectations. In t...
Enregistré dans:
Auteurs principaux: | Maarten R. Dobbelaere, Pieter P. Plehiers, Ruben Van de Vijver, Christian V. Stevens, Kevin M. Van Geem |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5297e32d3e9d477d95ca985730c8e9e8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Efficient Classification of Enciphered SCADA Network Traffic in Smart Factory Using Decision Tree Algorithm
par: Love Allen Chijioke Ahakonye, et autres
Publié: (2021) -
Forecasting the discharge capacity of inflatable rubber dams using hybrid machine learning models
par: Wenyu Zheng, et autres
Publié: (2021) -
Design of Smart Unstaffed Retail Shop Based on IoT and Artificial Intelligence
par: Jianqiang Xu, et autres
Publié: (2020) -
aiSTROM–A Roadmap for Developing a Successful AI Strategy
par: Dorien Herremans
Publié: (2021) -
Practical Aspects of the Design and Use of the Artificial Neural Networks in Materials Engineering
par: Wojciech Sitek, et autres
Publié: (2021)