Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films
Abstract We report the successful demonstration of a hybrid system that combines pulsed laser deposition (PLD) and magnetron sputtering (MS) to deposit high quality thin films. The PLD and MS simultaneously use the same target, leading to an enhanced deposition rate. The performance of this techniqu...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/53110acabebe435a90f3c7bb71769340 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:53110acabebe435a90f3c7bb71769340 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:53110acabebe435a90f3c7bb717693402021-12-02T15:05:07ZCombined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films10.1038/s41598-017-02284-02045-2322https://doaj.org/article/53110acabebe435a90f3c7bb717693402017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02284-0https://doaj.org/toc/2045-2322Abstract We report the successful demonstration of a hybrid system that combines pulsed laser deposition (PLD) and magnetron sputtering (MS) to deposit high quality thin films. The PLD and MS simultaneously use the same target, leading to an enhanced deposition rate. The performance of this technique is demonstrated through the deposition of titanium dioxide and bismuth-based perovskite oxide Bi2FeCrO6 (BFCO) thin films on Si(100) and LaAlO3 (LAO) (100). These specific oxides were chosen due to their functionalities, such as multiferroic and photovoltaic properties (BFCO) and photocatalysis (TiO2). We compare films deposited by conventional PLD, MS and PLD combined with MS, and show that under all conditions the latter technique offers an increased deposition rate (+50%) and produces films denser (+20%) than those produced by MS or PLD alone, and without the large clusters found in the PLD-deposited films. Under optimized conditions, the hybrid technique produces films that are two times smoother than either technique alone.D. BenettiR. NouarR. NechacheH. PepinA. SarkissianF. RoseiJ. M. MacLeodNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q D. Benetti R. Nouar R. Nechache H. Pepin A. Sarkissian F. Rosei J. M. MacLeod Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films |
description |
Abstract We report the successful demonstration of a hybrid system that combines pulsed laser deposition (PLD) and magnetron sputtering (MS) to deposit high quality thin films. The PLD and MS simultaneously use the same target, leading to an enhanced deposition rate. The performance of this technique is demonstrated through the deposition of titanium dioxide and bismuth-based perovskite oxide Bi2FeCrO6 (BFCO) thin films on Si(100) and LaAlO3 (LAO) (100). These specific oxides were chosen due to their functionalities, such as multiferroic and photovoltaic properties (BFCO) and photocatalysis (TiO2). We compare films deposited by conventional PLD, MS and PLD combined with MS, and show that under all conditions the latter technique offers an increased deposition rate (+50%) and produces films denser (+20%) than those produced by MS or PLD alone, and without the large clusters found in the PLD-deposited films. Under optimized conditions, the hybrid technique produces films that are two times smoother than either technique alone. |
format |
article |
author |
D. Benetti R. Nouar R. Nechache H. Pepin A. Sarkissian F. Rosei J. M. MacLeod |
author_facet |
D. Benetti R. Nouar R. Nechache H. Pepin A. Sarkissian F. Rosei J. M. MacLeod |
author_sort |
D. Benetti |
title |
Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films |
title_short |
Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films |
title_full |
Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films |
title_fullStr |
Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films |
title_full_unstemmed |
Combined magnetron sputtering and pulsed laser deposition of TiO 2 and BFCO thin films |
title_sort |
combined magnetron sputtering and pulsed laser deposition of tio 2 and bfco thin films |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/53110acabebe435a90f3c7bb71769340 |
work_keys_str_mv |
AT dbenetti combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms AT rnouar combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms AT rnechache combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms AT hpepin combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms AT asarkissian combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms AT frosei combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms AT jmmacleod combinedmagnetronsputteringandpulsedlaserdepositionoftio2andbfcothinfilms |
_version_ |
1718388954772799488 |