Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
Abstract The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computational...
Enregistré dans:
Auteurs principaux: | David Montes de Oca Zapiain, James A. Stewart, Rémi Dingreville |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5364a3d9c8394b509924926f4946716f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates
par: Robert Saunders, et autres
Publié: (2021) -
Decoding defect statistics from diffractograms via machine learning
par: Cody Kunka, et autres
Publié: (2021) -
Bayesian optimization with adaptive surrogate models for automated experimental design
par: Bowen Lei, et autres
Publié: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
par: Pikee Priya, et autres
Publié: (2021) -
Phase field modeling for the morphological and microstructural evolution of metallic materials under environmental attack
par: Talha Qasim Ansari, et autres
Publié: (2021)