A Review on Kernel Learning Method of Moving Target Tracking
The kernel method maps the original spatial data to a high-dimensional Hilbert space by nonlinear mapping and hides the mapping in the linear learner. The kernel function is used to replace the complex inner product operation in high-dimensional space, which can effectively avoid the ‘cu...
Guardado en:
Autor principal: | Lou Jiaxin, Li Yuankai, Wang Yuan, Xu Yanke |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Editorial Office of Aero Weaponry
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5368972fe3b84128a900f037435fc3b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamic Track Fusion Algorithm Based on Information Quality Selection
por: Zhen Xu, Liu Fang, Xia Yuping
Publicado: (2021) -
Radar Weak Target Tracking Based on LMB Smoothing
por: Liang Pu, Liu Rang, Chen Xing, Shang Zheran, Yi Tianzhu, Lu Dawei
Publicado: (2021) -
Research on Multi-Target Motion Estimation Method Based on Generalized Probability Hypothesis Density
por: Yu Meng, Xu Yanke, Hu Jiaqian
Publicado: (2021) -
Research on Real-Time Tracking Algorithm for Multi-Objects of Shipboard Aircraft Based on Detection
por: Tian Shaobing, Zhu Xingdong, Fan Jiali, Wang Zheng
Publicado: (2021) -
A Conflict Risk Analysis of MAV\UAV Flight in Shared Airspace
por: ChaoYu Xia, et al.
Publicado: (2021)