A Review on Kernel Learning Method of Moving Target Tracking
The kernel method maps the original spatial data to a high-dimensional Hilbert space by nonlinear mapping and hides the mapping in the linear learner. The kernel function is used to replace the complex inner product operation in high-dimensional space, which can effectively avoid the ‘cu...
Enregistré dans:
Auteur principal: | Lou Jiaxin, Li Yuankai, Wang Yuan, Xu Yanke |
---|---|
Format: | article |
Langue: | ZH |
Publié: |
Editorial Office of Aero Weaponry
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5368972fe3b84128a900f037435fc3b7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dynamic Track Fusion Algorithm Based on Information Quality Selection
par: Zhen Xu, Liu Fang, Xia Yuping
Publié: (2021) -
Radar Weak Target Tracking Based on LMB Smoothing
par: Liang Pu, Liu Rang, Chen Xing, Shang Zheran, Yi Tianzhu, Lu Dawei
Publié: (2021) -
Research on Multi-Target Motion Estimation Method Based on Generalized Probability Hypothesis Density
par: Yu Meng, Xu Yanke, Hu Jiaqian
Publié: (2021) -
Research on Real-Time Tracking Algorithm for Multi-Objects of Shipboard Aircraft Based on Detection
par: Tian Shaobing, Zhu Xingdong, Fan Jiali, Wang Zheng
Publié: (2021) -
A Conflict Risk Analysis of MAV\UAV Flight in Shared Airspace
par: ChaoYu Xia, et autres
Publié: (2021)