<span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers

Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker’s yeast <i>Saccharomy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel P. Brink, Celina Borgström, Viktor C. Persson, Karen Ofuji Osiro, Marie F. Gorwa-Grauslund
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5493b4f862084f3e93e0879fbac2d4a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5493b4f862084f3e93e0879fbac2d4a0
record_format dspace
spelling oai:doaj.org-article:5493b4f862084f3e93e0879fbac2d4a02021-11-25T17:56:26Z<span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers10.3390/ijms2222124101422-00671661-6596https://doaj.org/article/5493b4f862084f3e93e0879fbac2d4a02021-11-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/22/12410https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker’s yeast <i>Saccharomyces cerevisiae</i> for the utilization of <span style="font-variant: small-caps;">d-</span>xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant <i>S. cerevisiae</i> to ferment <span style="font-variant: small-caps;">d-</span>xylose to ethanol at high yields, the consumption rate of <span style="font-variant: small-caps;">d</span>-xylose is still significantly lower than that of its preferred sugar <span style="font-variant: small-caps;">d</span>-glucose. In mixed <span style="font-variant: small-caps;">d</span>-glucose/<span style="font-variant: small-caps;">d</span>-xylose cultivations, <span style="font-variant: small-caps;">d</span>-xylose is only utilized after <span style="font-variant: small-caps;">d</span>-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on <span style="font-variant: small-caps;">d</span>-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of <i>S. cerevisiae</i> signaling pathways to <span style="font-variant: small-caps;">d</span>-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in <i>S. cerevisiae</i> to <span style="font-variant: small-caps;">d</span>-glucose (the preferred sugar of the yeast). Using the <span style="font-variant: small-caps;">d</span>-glucose case as a point of reference, we then proceed to discuss the known signaling response to <span style="font-variant: small-caps;">d</span>-xylose in <i>S. cerevisiae</i> and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.Daniel P. BrinkCelina BorgströmViktor C. PerssonKaren Ofuji OsiroMarie F. Gorwa-GrauslundMDPI AGarticle<i>Saccharomyces cerevisiae</i><span style="font-variant: small-caps">d</span>-xylosesugar sensingsugar signalingnon-native substratesignaling network engineeringBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 12410, p 12410 (2021)
institution DOAJ
collection DOAJ
language EN
topic <i>Saccharomyces cerevisiae</i>
<span style="font-variant: small-caps">d</span>-xylose
sugar sensing
sugar signaling
non-native substrate
signaling network engineering
Biology (General)
QH301-705.5
Chemistry
QD1-999
spellingShingle <i>Saccharomyces cerevisiae</i>
<span style="font-variant: small-caps">d</span>-xylose
sugar sensing
sugar signaling
non-native substrate
signaling network engineering
Biology (General)
QH301-705.5
Chemistry
QD1-999
Daniel P. Brink
Celina Borgström
Viktor C. Persson
Karen Ofuji Osiro
Marie F. Gorwa-Grauslund
<span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers
description Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker’s yeast <i>Saccharomyces cerevisiae</i> for the utilization of <span style="font-variant: small-caps;">d-</span>xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant <i>S. cerevisiae</i> to ferment <span style="font-variant: small-caps;">d-</span>xylose to ethanol at high yields, the consumption rate of <span style="font-variant: small-caps;">d</span>-xylose is still significantly lower than that of its preferred sugar <span style="font-variant: small-caps;">d</span>-glucose. In mixed <span style="font-variant: small-caps;">d</span>-glucose/<span style="font-variant: small-caps;">d</span>-xylose cultivations, <span style="font-variant: small-caps;">d</span>-xylose is only utilized after <span style="font-variant: small-caps;">d</span>-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on <span style="font-variant: small-caps;">d</span>-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of <i>S. cerevisiae</i> signaling pathways to <span style="font-variant: small-caps;">d</span>-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in <i>S. cerevisiae</i> to <span style="font-variant: small-caps;">d</span>-glucose (the preferred sugar of the yeast). Using the <span style="font-variant: small-caps;">d</span>-glucose case as a point of reference, we then proceed to discuss the known signaling response to <span style="font-variant: small-caps;">d</span>-xylose in <i>S. cerevisiae</i> and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
format article
author Daniel P. Brink
Celina Borgström
Viktor C. Persson
Karen Ofuji Osiro
Marie F. Gorwa-Grauslund
author_facet Daniel P. Brink
Celina Borgström
Viktor C. Persson
Karen Ofuji Osiro
Marie F. Gorwa-Grauslund
author_sort Daniel P. Brink
title <span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers
title_short <span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers
title_full <span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers
title_fullStr <span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers
title_full_unstemmed <span style="font-variant: small-caps">D</span>-Xylose Sensing in <i>Saccharomyces cerevisiae</i>: Insights from <span style="font-variant: small-caps">D</span>-Glucose Signaling and Native <span style="font-variant: small-caps">D</span>-Xylose Utilizers
title_sort <span style="font-variant: small-caps">d</span>-xylose sensing in <i>saccharomyces cerevisiae</i>: insights from <span style="font-variant: small-caps">d</span>-glucose signaling and native <span style="font-variant: small-caps">d</span>-xylose utilizers
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/5493b4f862084f3e93e0879fbac2d4a0
work_keys_str_mv AT danielpbrink spanstylefontvariantsmallcapsdspanxylosesensinginisaccharomycescerevisiaeiinsightsfromspanstylefontvariantsmallcapsdspanglucosesignalingandnativespanstylefontvariantsmallcapsdspanxyloseutilizers
AT celinaborgstrom spanstylefontvariantsmallcapsdspanxylosesensinginisaccharomycescerevisiaeiinsightsfromspanstylefontvariantsmallcapsdspanglucosesignalingandnativespanstylefontvariantsmallcapsdspanxyloseutilizers
AT viktorcpersson spanstylefontvariantsmallcapsdspanxylosesensinginisaccharomycescerevisiaeiinsightsfromspanstylefontvariantsmallcapsdspanglucosesignalingandnativespanstylefontvariantsmallcapsdspanxyloseutilizers
AT karenofujiosiro spanstylefontvariantsmallcapsdspanxylosesensinginisaccharomycescerevisiaeiinsightsfromspanstylefontvariantsmallcapsdspanglucosesignalingandnativespanstylefontvariantsmallcapsdspanxyloseutilizers
AT mariefgorwagrauslund spanstylefontvariantsmallcapsdspanxylosesensinginisaccharomycescerevisiaeiinsightsfromspanstylefontvariantsmallcapsdspanglucosesignalingandnativespanstylefontvariantsmallcapsdspanxyloseutilizers
_version_ 1718411802278100992