Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream ana...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S. Magruder, Christian F. Krebs, Stefan Bonn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/54eea9701f364c569d5dd410717e6a68
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54eea9701f364c569d5dd410717e6a68
record_format dspace
spelling oai:doaj.org-article:54eea9701f364c569d5dd410717e6a682021-12-02T15:39:20ZRealistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks10.1038/s41467-019-14018-z2041-1723https://doaj.org/article/54eea9701f364c569d5dd410717e6a682020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-14018-zhttps://doaj.org/toc/2041-1723Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.Mohamed MaroufPierre MachartVikas BansalChristoph KilianDaniel S. MagruderChristian F. KrebsStefan BonnNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mohamed Marouf
Pierre Machart
Vikas Bansal
Christoph Kilian
Daniel S. Magruder
Christian F. Krebs
Stefan Bonn
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
description Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.
format article
author Mohamed Marouf
Pierre Machart
Vikas Bansal
Christoph Kilian
Daniel S. Magruder
Christian F. Krebs
Stefan Bonn
author_facet Mohamed Marouf
Pierre Machart
Vikas Bansal
Christoph Kilian
Daniel S. Magruder
Christian F. Krebs
Stefan Bonn
author_sort Mohamed Marouf
title Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
title_short Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
title_full Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
title_fullStr Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
title_full_unstemmed Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
title_sort realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/54eea9701f364c569d5dd410717e6a68
work_keys_str_mv AT mohamedmarouf realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
AT pierremachart realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
AT vikasbansal realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
AT christophkilian realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
AT danielsmagruder realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
AT christianfkrebs realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
AT stefanbonn realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks
_version_ 1718385931237457920