Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream ana...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54eea9701f364c569d5dd410717e6a68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54eea9701f364c569d5dd410717e6a68 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54eea9701f364c569d5dd410717e6a682021-12-02T15:39:20ZRealistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks10.1038/s41467-019-14018-z2041-1723https://doaj.org/article/54eea9701f364c569d5dd410717e6a682020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-14018-zhttps://doaj.org/toc/2041-1723Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.Mohamed MaroufPierre MachartVikas BansalChristoph KilianDaniel S. MagruderChristian F. KrebsStefan BonnNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Mohamed Marouf Pierre Machart Vikas Bansal Christoph Kilian Daniel S. Magruder Christian F. Krebs Stefan Bonn Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
description |
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses. |
format |
article |
author |
Mohamed Marouf Pierre Machart Vikas Bansal Christoph Kilian Daniel S. Magruder Christian F. Krebs Stefan Bonn |
author_facet |
Mohamed Marouf Pierre Machart Vikas Bansal Christoph Kilian Daniel S. Magruder Christian F. Krebs Stefan Bonn |
author_sort |
Mohamed Marouf |
title |
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
title_short |
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
title_full |
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
title_fullStr |
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
title_full_unstemmed |
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
title_sort |
realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/54eea9701f364c569d5dd410717e6a68 |
work_keys_str_mv |
AT mohamedmarouf realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks AT pierremachart realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks AT vikasbansal realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks AT christophkilian realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks AT danielsmagruder realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks AT christianfkrebs realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks AT stefanbonn realisticinsilicogenerationandaugmentationofsinglecellrnaseqdatausinggenerativeadversarialnetworks |
_version_ |
1718385931237457920 |