Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream ana...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54eea9701f364c569d5dd410717e6a68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|