Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream ana...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S. Magruder, Christian F. Krebs, Stefan Bonn
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/54eea9701f364c569d5dd410717e6a68
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!