Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream ana...
Guardado en:
Autores principales: | Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S. Magruder, Christian F. Krebs, Stefan Bonn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54eea9701f364c569d5dd410717e6a68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Mingyu Kim, et al.
Publicado: (2021) -
Author Correction: Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Mingyu Kim, et al.
Publicado: (2021) -
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks
por: Tuan-Feng Zhang, et al.
Publicado: (2019) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Generative adversarial networks for generating synthetic features for Wi-Fi signal quality.
por: Mauro Castelli, et al.
Publicado: (2021)