A nanofluidic knot factory based on compression of single DNA in nanochannels
Polymer knots are important for a range of biological systems and engineering applications, yet the variables influencing knotting probability are not well understood. Here the authors develop a nanofluidic device that can detect knots and provide a free energy formalism that can quantify knotting p...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/552bcbf1667d4397b0fb09d55e482b45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Polymer knots are important for a range of biological systems and engineering applications, yet the variables influencing knotting probability are not well understood. Here the authors develop a nanofluidic device that can detect knots and provide a free energy formalism that can quantify knotting probability in their system. |
---|