Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach
Generating spatiotemporally continuous land surface temperature (LST) data is in great demand for hydrology, meteorology, ecology, environmental studies, etc. However, the thermal infrared (TIR)-based LST measurements are prone to cloud contamination with missing pixels. To repair the missing pixels...
Enregistré dans:
Auteurs principaux: | Weiwei Tan, Chunzhu Wei, Yang Lu, Desheng Xue |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/55745c8341e749a5a73bd9e8e12a274c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
VERTICAL TEMPERATURE AND MOISTURE STRUCTURE IN LOWER ATMOSPHERE RETRIVED FROM TERRA/MODIS
par: Kim,Y. S, et autres
Publié: (2004) -
Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
par: Md Didarul Islam, et autres
Publié: (2022) -
Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
par: Suwarno Liang
Publié: (2021) -
MODY2 diagnostic issues in adults
par: Irina V. Kononenko, et autres
Publié: (2019) -
A Data-Driven Method for Power System Transient Instability Mode Identification Based on Knowledge Discovery and XGBoost Algorithm
par: Neng Zhang, et autres
Publié: (2021)