Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks
Monitoring and managing water quality parameters (WQPs) in water bodies (e.g., lakes) on a large scale using sampling-point techniques is tedious, laborious, and not highly representative. Hyperspectral and data-driven technology have provided a potentially valuable tool for the precise measurement...
Enregistré dans:
Auteurs principaux: | Salah Elsayed, Hekmat Ibrahim, Hend Hussein, Osama Elsherbiny, Adel H. Elmetwalli, Farahat S. Moghanm, Adel M. Ghoneim, Subhan Danish, Rahul Datta, Mohamed Gad |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5585eeb5980b45f088cc3b59e7e6de87 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Changes in Selected Water Quality Parameters in the Utrata River as a Function of Catchment Area Land Use
par: Katarzyna Dębska, et autres
Publié: (2021) -
Nitrogen cycling in sub-oxic water colmns
par: Dalsgaard,Tage, et autres
Publié: (2006) -
An Alternative to Laboratory Testing: Random Forest-Based Water Quality Prediction Framework for Inland and Nearshore Water Bodies
par: Jianlong Xu, et autres
Publié: (2021) -
Spatiotemporal Variation on Water Quality and Trophic State of a Tropical Urban Reservoir: A Case Study of the Lake Paranoá-DF, Brazil
par: Damiana B. da Silva, et autres
Publié: (2021) -
Effects of Seasonal Thermal Stratification on Nitrogen Transformation and Diffusion at the Sediment-Water Interface in a Deep Canyon Artificial Reservoir of Wujiang River Basin
par: Yongmei Hou, et autres
Publié: (2021)