Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery
Current genome mining methods predict many putative non-ribosomal peptides (NRPs) from their corresponding biosynthetic gene clusters, but it remains unclear which of those exist in nature and how to identify their post-assembly modifications. Here, the authors develop NRPminer, a modification-toler...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56701c0cd5c2408cb5012222fe11866d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:56701c0cd5c2408cb5012222fe11866d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:56701c0cd5c2408cb5012222fe11866d2021-12-02T14:47:29ZIntegrating genomics and metabolomics for scalable non-ribosomal peptide discovery10.1038/s41467-021-23502-42041-1723https://doaj.org/article/56701c0cd5c2408cb5012222fe11866d2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23502-4https://doaj.org/toc/2041-1723Current genome mining methods predict many putative non-ribosomal peptides (NRPs) from their corresponding biosynthetic gene clusters, but it remains unclear which of those exist in nature and how to identify their post-assembly modifications. Here, the authors develop NRPminer, a modification-tolerant tool for the discovery of NRPs from large genomic and mass spectrometry datasets, and use it to find 180 NRPs from different environments.Bahar BehsazEdna BodeAlexey GurevichYan-Ni ShiFlorian GrundmannDeepa AcharyaAndrés Mauricio Caraballo-RodríguezAmina BouslimaniMorgan PanitchpakdiAnnabell LinckChanghui GuanJulia OhPieter C. DorresteinHelge B. BodePavel A. PevznerHosein MohimaniNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-17 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Bahar Behsaz Edna Bode Alexey Gurevich Yan-Ni Shi Florian Grundmann Deepa Acharya Andrés Mauricio Caraballo-Rodríguez Amina Bouslimani Morgan Panitchpakdi Annabell Linck Changhui Guan Julia Oh Pieter C. Dorrestein Helge B. Bode Pavel A. Pevzner Hosein Mohimani Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
description |
Current genome mining methods predict many putative non-ribosomal peptides (NRPs) from their corresponding biosynthetic gene clusters, but it remains unclear which of those exist in nature and how to identify their post-assembly modifications. Here, the authors develop NRPminer, a modification-tolerant tool for the discovery of NRPs from large genomic and mass spectrometry datasets, and use it to find 180 NRPs from different environments. |
format |
article |
author |
Bahar Behsaz Edna Bode Alexey Gurevich Yan-Ni Shi Florian Grundmann Deepa Acharya Andrés Mauricio Caraballo-Rodríguez Amina Bouslimani Morgan Panitchpakdi Annabell Linck Changhui Guan Julia Oh Pieter C. Dorrestein Helge B. Bode Pavel A. Pevzner Hosein Mohimani |
author_facet |
Bahar Behsaz Edna Bode Alexey Gurevich Yan-Ni Shi Florian Grundmann Deepa Acharya Andrés Mauricio Caraballo-Rodríguez Amina Bouslimani Morgan Panitchpakdi Annabell Linck Changhui Guan Julia Oh Pieter C. Dorrestein Helge B. Bode Pavel A. Pevzner Hosein Mohimani |
author_sort |
Bahar Behsaz |
title |
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
title_short |
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
title_full |
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
title_fullStr |
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
title_full_unstemmed |
Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
title_sort |
integrating genomics and metabolomics for scalable non-ribosomal peptide discovery |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/56701c0cd5c2408cb5012222fe11866d |
work_keys_str_mv |
AT baharbehsaz integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT ednabode integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT alexeygurevich integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT yannishi integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT floriangrundmann integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT deepaacharya integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT andresmauriciocaraballorodriguez integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT aminabouslimani integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT morganpanitchpakdi integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT annabelllinck integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT changhuiguan integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT juliaoh integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT pietercdorrestein integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT helgebbode integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT pavelapevzner integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery AT hoseinmohimani integratinggenomicsandmetabolomicsforscalablenonribosomalpeptidediscovery |
_version_ |
1718389509044830208 |