Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning

In this study, we aim to bridge the gap between the theoretical understanding of attacks against collaborative machine learning workflows and their practical ramifications by considering the effects of model architecture, learning setting and hyperparameters on the resilience against attacks. We ref...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Usynin Dmitrii, Rueckert Daniel, Passerat-Palmbach Jonathan, Kaissis Georgios
Formato: article
Lenguaje:EN
Publicado: Sciendo 2022
Materias:
Acceso en línea:https://doaj.org/article/56cd977fda7b4e01ba8ccebbda7d6e6e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!