Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning
In this study, we aim to bridge the gap between the theoretical understanding of attacks against collaborative machine learning workflows and their practical ramifications by considering the effects of model architecture, learning setting and hyperparameters on the resilience against attacks. We ref...
Guardado en:
Autores principales: | Usynin Dmitrii, Rueckert Daniel, Passerat-Palmbach Jonathan, Kaissis Georgios |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Sciendo
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56cd977fda7b4e01ba8ccebbda7d6e6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Disparate Vulnerability to Membership Inference Attacks
por: Kulynych Bogdan, et al.
Publicado: (2022) -
Differentially private partition selection
por: Desfontaines Damien, et al.
Publicado: (2022) -
Personal information inference from voice recordings: User awareness and privacy concerns
por: Kröger Jacob Leon, et al.
Publicado: (2022) -
Toward Uncensorable, Anonymous and Private Access Over Satoshi Blockchains
por: Recabarren Ruben, et al.
Publicado: (2022) -
(∈, δ)-Indistinguishable Mixing for Cryptocurrencies
por: Liang Mingyu, et al.
Publicado: (2022)