Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning
In this study, we aim to bridge the gap between the theoretical understanding of attacks against collaborative machine learning workflows and their practical ramifications by considering the effects of model architecture, learning setting and hyperparameters on the resilience against attacks. We ref...
Enregistré dans:
Auteurs principaux: | Usynin Dmitrii, Rueckert Daniel, Passerat-Palmbach Jonathan, Kaissis Georgios |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Sciendo
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/56cd977fda7b4e01ba8ccebbda7d6e6e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Disparate Vulnerability to Membership Inference Attacks
par: Kulynych Bogdan, et autres
Publié: (2022) -
Differentially private partition selection
par: Desfontaines Damien, et autres
Publié: (2022) -
Personal information inference from voice recordings: User awareness and privacy concerns
par: Kröger Jacob Leon, et autres
Publié: (2022) -
Toward Uncensorable, Anonymous and Private Access Over Satoshi Blockchains
par: Recabarren Ruben, et autres
Publié: (2022) -
(∈, δ)-Indistinguishable Mixing for Cryptocurrencies
par: Liang Mingyu, et autres
Publié: (2022)