Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support
Abstract ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type-1 motif 13)-related bleeding disorder has been frequently observed as a life-threatening clinical complication in patients carrying a circulatory assist device. Currently, treatment modalities for the bleeding disor...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56ea2f8987bd4ff3a9909e359a9b94c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:56ea2f8987bd4ff3a9909e359a9b94c8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:56ea2f8987bd4ff3a9909e359a9b94c82021-11-21T12:19:46ZOptimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support10.1038/s41598-021-01696-32045-2322https://doaj.org/article/56ea2f8987bd4ff3a9909e359a9b94c82021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01696-3https://doaj.org/toc/2045-2322Abstract ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type-1 motif 13)-related bleeding disorder has been frequently observed as a life-threatening clinical complication in patients carrying a circulatory assist device. Currently, treatment modalities for the bleeding disorder are very limited and not always successful. To address the unmet medical need, we constructed humanized antibodies of mouse anti-ADAMTS13 antibody A10 (mA10) by using complementarity-determining region (CDR) grafting techniques with human antibody frameworks, 8A7 and 16E8. The characteristics of the two humanized A10 antibodies, namely A10/8A7 and A10/16E8, were assessed in vitro and in silico. Among the two humanized A10 antibodies, the binding affinity of A10/16E8 to ADAMTS13 was comparable to that of mA10 and human-mouse chimeric A10. In addition, A10/16E8 largely inhibited the ADAMTS13 activity in vitro. The results indicated that A10/16E8 retained the binding affinity and inhibitory activity of mA10. To compare the antibody structures, we performed antibody structure modeling and structural similarity analysis in silico. As a result, A10/16E8 showed higher structural similarity to mA10, compared with A10/8A7, suggesting that A10/16E8 retains a native structure of mA10 as well as its antigen binding affinity and activity. A10/16E8 has great potential as a therapeutic agent for ADAMTS13-related bleeding disorder.Toshihiro ItoTakeharu MinamitaniMasaki HayakawaRyota OtsuboHiroki AkibaKouhei TsumotoMasanori MatsumotoTeruhito YasuiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Toshihiro Ito Takeharu Minamitani Masaki Hayakawa Ryota Otsubo Hiroki Akiba Kouhei Tsumoto Masanori Matsumoto Teruhito Yasui Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support |
description |
Abstract ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type-1 motif 13)-related bleeding disorder has been frequently observed as a life-threatening clinical complication in patients carrying a circulatory assist device. Currently, treatment modalities for the bleeding disorder are very limited and not always successful. To address the unmet medical need, we constructed humanized antibodies of mouse anti-ADAMTS13 antibody A10 (mA10) by using complementarity-determining region (CDR) grafting techniques with human antibody frameworks, 8A7 and 16E8. The characteristics of the two humanized A10 antibodies, namely A10/8A7 and A10/16E8, were assessed in vitro and in silico. Among the two humanized A10 antibodies, the binding affinity of A10/16E8 to ADAMTS13 was comparable to that of mA10 and human-mouse chimeric A10. In addition, A10/16E8 largely inhibited the ADAMTS13 activity in vitro. The results indicated that A10/16E8 retained the binding affinity and inhibitory activity of mA10. To compare the antibody structures, we performed antibody structure modeling and structural similarity analysis in silico. As a result, A10/16E8 showed higher structural similarity to mA10, compared with A10/8A7, suggesting that A10/16E8 retains a native structure of mA10 as well as its antigen binding affinity and activity. A10/16E8 has great potential as a therapeutic agent for ADAMTS13-related bleeding disorder. |
format |
article |
author |
Toshihiro Ito Takeharu Minamitani Masaki Hayakawa Ryota Otsubo Hiroki Akiba Kouhei Tsumoto Masanori Matsumoto Teruhito Yasui |
author_facet |
Toshihiro Ito Takeharu Minamitani Masaki Hayakawa Ryota Otsubo Hiroki Akiba Kouhei Tsumoto Masanori Matsumoto Teruhito Yasui |
author_sort |
Toshihiro Ito |
title |
Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support |
title_short |
Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support |
title_full |
Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support |
title_fullStr |
Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support |
title_full_unstemmed |
Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support |
title_sort |
optimization of anti-adamts13 antibodies for the treatment of adamts13-related bleeding disorder in patients receiving circulatory assist device support |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/56ea2f8987bd4ff3a9909e359a9b94c8 |
work_keys_str_mv |
AT toshihiroito optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT takeharuminamitani optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT masakihayakawa optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT ryotaotsubo optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT hirokiakiba optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT kouheitsumoto optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT masanorimatsumoto optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport AT teruhitoyasui optimizationofantiadamts13antibodiesforthetreatmentofadamts13relatedbleedingdisorderinpatientsreceivingcirculatoryassistdevicesupport |
_version_ |
1718419065426411520 |