Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.
Enregistré dans:
Auteurs principaux: | Wang Shengrong, Xu Jingshi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Some estimates for the commutators of multilinear maximal function on Morrey-type space
par: Yu Xiao, et autres
Publié: (2021) -
A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces
par: Kaya Esra
Publié: (2021) -
Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces
par: Zhang Xiao, et autres
Publié: (2021) -
Variable Anisotropic Hardy Spaces with Variable Exponents
par: Yang Zhenzhen, et autres
Publié: (2021) -
Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
par: Zhang Junqiang, et autres
Publié: (2021)