Intelligent Ensemble Learning Approach for Phishing Website Detection Based on Weighted Soft Voting
The continuous development of network technologies plays a major role in increasing the utilization of these technologies in many aspects of our lives, including e-commerce, electronic banking, social media, e-health, and e-learning. In recent times, phishing websites have emerged as a major cyberse...
Guardado en:
Autor principal: | Altyeb Taha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57b90c1778a24a8c9c0ae97602873b65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust Ensemble Machine Learning Model for Filtering Phishing URLs: Expandable Random Gradient Stacked Voting Classifier (ERG-SVC)
por: Pubudu L. Indrasiri, et al.
Publicado: (2021) -
Performance of Machine Learning-Based Multi-Model Voting Ensemble Methods for Network Threat Detection in Agriculture 4.0
por: Nikolaos Peppes, et al.
Publicado: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
Estafas informáticas a través de Internet: acerca de la imputación penal del "phishing" y el "pharming"
por: Oxman,Nicolás
Publicado: (2013) -
Green cover change detection using a modified adaptive ensemble of extreme learning machines for North-Western India
por: Madhu Khurana, et al.
Publicado: (2021)