Intelligent Ensemble Learning Approach for Phishing Website Detection Based on Weighted Soft Voting
The continuous development of network technologies plays a major role in increasing the utilization of these technologies in many aspects of our lives, including e-commerce, electronic banking, social media, e-health, and e-learning. In recent times, phishing websites have emerged as a major cyberse...
Enregistré dans:
| Auteur principal: | Altyeb Taha |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/57b90c1778a24a8c9c0ae97602873b65 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Robust Ensemble Machine Learning Model for Filtering Phishing URLs: Expandable Random Gradient Stacked Voting Classifier (ERG-SVC)
par: Pubudu L. Indrasiri, et autres
Publié: (2021) -
Performance of Machine Learning-Based Multi-Model Voting Ensemble Methods for Network Threat Detection in Agriculture 4.0
par: Nikolaos Peppes, et autres
Publié: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
par: Altyeb Taha, et autres
Publié: (2021) -
Estafas informáticas a través de Internet: acerca de la imputación penal del "phishing" y el "pharming"
par: Oxman,Nicolás
Publié: (2013) -
Green cover change detection using a modified adaptive ensemble of extreme learning machines for North-Western India
par: Madhu Khurana, et autres
Publié: (2021)