Identification of variation in nutritional practice in neonatal units in England and association with clinical outcomes using agnostic machine learning

Abstract We used agnostic, unsupervised machine learning to cluster a large clinical database of information on infants admitted to neonatal units in England. Our aim was to obtain insights into nutritional practice, an area of central importance in newborn care, utilising the UK National Neonatal R...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Sam F. Greenbury, Kayleigh Ougham, Jinyi Wu, Cheryl Battersby, Chris Gale, Neena Modi, Elsa D. Angelini
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/57c4b1daaf4645168fb16db8a186d777
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!