Identification of variation in nutritional practice in neonatal units in England and association with clinical outcomes using agnostic machine learning
Abstract We used agnostic, unsupervised machine learning to cluster a large clinical database of information on infants admitted to neonatal units in England. Our aim was to obtain insights into nutritional practice, an area of central importance in newborn care, utilising the UK National Neonatal R...
Guardado en:
Autores principales: | Sam F. Greenbury, Kayleigh Ougham, Jinyi Wu, Cheryl Battersby, Chris Gale, Neena Modi, Elsa D. Angelini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57c4b1daaf4645168fb16db8a186d777 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Changes in neonatal admissions, care processes and outcomes in England and Wales during the COVID-19 pandemic: a whole population cohort study
por: Sam F Greenbury, et al.
Publicado: (2021) -
Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach
por: Cláudia M. Viana, et al.
Publicado: (2021) -
Parents’ experiences of neonatal care in England
por: Sarah-Ann Burger, et al.
Publicado: (2015) -
Mode of delivery and offspring body mass index, overweight and obesity in adult life: a systematic review and meta-analysis.
por: Karthik Darmasseelane, et al.
Publicado: (2014) -
A Model-Agnostic Algorithm for Bayes Error Determination in Binary Classification
por: Umberto Michelucci, et al.
Publicado: (2021)