A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions

Deep learning algorithms trained on data streamed temporally from different clinical sites and from a multitude of physiological sensors are generally affected by a degradation in performance. To mitigate this, the authors propose a continual learning strategy that employs a replay buffer.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Dani Kiyasseh, Tingting Zhu, David Clifton
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/5943e24bee1a4eb1be3eaa04425d47c2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!