A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions
Deep learning algorithms trained on data streamed temporally from different clinical sites and from a multitude of physiological sensors are generally affected by a degradation in performance. To mitigate this, the authors propose a continual learning strategy that employs a replay buffer.
Guardado en:
Autores principales: | Dani Kiyasseh, Tingting Zhu, David Clifton |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5943e24bee1a4eb1be3eaa04425d47c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep learning based framework for the registration of three dimensional multi-modal medical images of the head
por: Kh Tohidul Islam, et al.
Publicado: (2021) -
TSMG: A Deep Learning Framework for Recognizing Human Learning Style Using EEG Signals
por: Bingxue Zhang, et al.
Publicado: (2021) -
Deep Learning Framework to Detect Ischemic Stroke Lesion in Brain MRI Slices of Flair/DW/T1 Modalities
por: Venkatesan Rajinikanth, et al.
Publicado: (2021) -
Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
por: Nicolas Frémaux, et al.
Publicado: (2013) -
Associative learning and extinction of conditioned threat predictors across sensory modalities
por: Laura. R. Koenen, et al.
Publicado: (2021)