Improving random forest predictions in small datasets from two-phase sampling designs
Abstract Background While random forests are one of the most successful machine learning methods, it is necessary to optimize their performance for use with datasets resulting from a two-phase sampling design with a small number of cases—a common situation in biomedical studies, which often have rar...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59888be2e459495c93e907d674a72e1a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|