Improving random forest predictions in small datasets from two-phase sampling designs
Abstract Background While random forests are one of the most successful machine learning methods, it is necessary to optimize their performance for use with datasets resulting from a two-phase sampling design with a small number of cases—a common situation in biomedical studies, which often have rar...
Guardado en:
Autores principales: | Sunwoo Han, Brian D. Williamson, Youyi Fong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59888be2e459495c93e907d674a72e1a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
por: Trishan Panch, et al.
Publicado: (2020) -
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
por: Mike D. Rinderknecht, et al.
Publicado: (2021) -
LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification
por: Lihong Peng, et al.
Publicado: (2021) -
A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
por: Yongli Xu, et al.
Publicado: (2021) -
Management of cardiovascular disease using an mHealth tool: a randomized clinical trial
por: Si-Hyuck Kang, et al.
Publicado: (2021)