Improving random forest predictions in small datasets from two-phase sampling designs
Abstract Background While random forests are one of the most successful machine learning methods, it is necessary to optimize their performance for use with datasets resulting from a two-phase sampling design with a small number of cases—a common situation in biomedical studies, which often have rar...
Enregistré dans:
| Auteurs principaux: | , , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
BMC
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/59888be2e459495c93e907d674a72e1a |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!