Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate

This study investigates a device&#x2019;s ability to boost its on-state current and subthreshold behavior using a ferroelectric field-effect transistor (FeFET) with an ultrathin sub-5-nm Hf<sub>1-<italic>x</italic></sub>Zr<italic>x</italic>O2 (HZO). A conventi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shen-Yang Lee, Chia-Chin Lee, Yi-Shan Kuo, Shou-Wei Li, Tien-Sheng Chao
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/5ac82faab6e2474280122c96baced3f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5ac82faab6e2474280122c96baced3f7
record_format dspace
spelling oai:doaj.org-article:5ac82faab6e2474280122c96baced3f72021-11-19T00:01:55ZUltrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate2168-673410.1109/JEDS.2021.3056438https://doaj.org/article/5ac82faab6e2474280122c96baced3f72021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9344700/https://doaj.org/toc/2168-6734This study investigates a device&#x2019;s ability to boost its on-state current and subthreshold behavior using a ferroelectric field-effect transistor (FeFET) with an ultrathin sub-5-nm Hf<sub>1-<italic>x</italic></sub>Zr<italic>x</italic>O2 (HZO). A conventional field-effect transistor (FET) with pure hafnium (HfO<sub>2</sub>) is used as a control measure and the impact of an internal metal gate (IMG) is also discussed. The study was conducted by using a sub-5-nm HZO and seed layer to fabricate a gate-all-around (GAA) nanowire (NW); a FeFET with a metal-ferroelectric&#x2013;metal-insulator-semiconductor (MFMIS) structure; and a double layer (DL) of the channel. The channel size used in the experiment was approximately <inline-formula> <tex-math notation="LaTeX">$9.6\times16$ </tex-math></inline-formula> nm<sup>2</sup> and the total thickness of the gate stack was 9.2 nm. This thickness is 50.5&#x0025; less than our previous experiment. The FeFET exhibits a considerably high <inline-formula> <tex-math notation="LaTeX">${I}_{on}$ </tex-math></inline-formula>&#x2013;<inline-formula> <tex-math notation="LaTeX">${I}_{off}$ </tex-math></inline-formula> ratio exceeding 107. The IMG serves as a potential equalizer and the ferroelectric material is arranged in a more symmetrical electric field. This results in a lower subthreshold (sub-<inline-formula> <tex-math notation="LaTeX">${V}_{TH}$ </tex-math></inline-formula>) swing (<inline-formula> <tex-math notation="LaTeX">$S.S._{min}=$ </tex-math></inline-formula> 49.3mV/decade) with a wide range (<inline-formula> <tex-math notation="LaTeX">$10^{3}$ </tex-math></inline-formula>) of drain currentcompared to that without an IMG. The findings indicate that a high-performance GAA FET can be achieved by combining a DL channel, GAA NW, ferroelectric material, and an IMG.Shen-Yang LeeChia-Chin LeeYi-Shan KuoShou-Wei LiTien-Sheng ChaoIEEEarticleStacked channelgate-all-aroundnanowireFeFETPoly-SiMFMISElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Journal of the Electron Devices Society, Vol 9, Pp 236-241 (2021)
institution DOAJ
collection DOAJ
language EN
topic Stacked channel
gate-all-around
nanowire
FeFET
Poly-Si
MFMIS
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Stacked channel
gate-all-around
nanowire
FeFET
Poly-Si
MFMIS
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Shen-Yang Lee
Chia-Chin Lee
Yi-Shan Kuo
Shou-Wei Li
Tien-Sheng Chao
Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate
description This study investigates a device&#x2019;s ability to boost its on-state current and subthreshold behavior using a ferroelectric field-effect transistor (FeFET) with an ultrathin sub-5-nm Hf<sub>1-<italic>x</italic></sub>Zr<italic>x</italic>O2 (HZO). A conventional field-effect transistor (FET) with pure hafnium (HfO<sub>2</sub>) is used as a control measure and the impact of an internal metal gate (IMG) is also discussed. The study was conducted by using a sub-5-nm HZO and seed layer to fabricate a gate-all-around (GAA) nanowire (NW); a FeFET with a metal-ferroelectric&#x2013;metal-insulator-semiconductor (MFMIS) structure; and a double layer (DL) of the channel. The channel size used in the experiment was approximately <inline-formula> <tex-math notation="LaTeX">$9.6\times16$ </tex-math></inline-formula> nm<sup>2</sup> and the total thickness of the gate stack was 9.2 nm. This thickness is 50.5&#x0025; less than our previous experiment. The FeFET exhibits a considerably high <inline-formula> <tex-math notation="LaTeX">${I}_{on}$ </tex-math></inline-formula>&#x2013;<inline-formula> <tex-math notation="LaTeX">${I}_{off}$ </tex-math></inline-formula> ratio exceeding 107. The IMG serves as a potential equalizer and the ferroelectric material is arranged in a more symmetrical electric field. This results in a lower subthreshold (sub-<inline-formula> <tex-math notation="LaTeX">${V}_{TH}$ </tex-math></inline-formula>) swing (<inline-formula> <tex-math notation="LaTeX">$S.S._{min}=$ </tex-math></inline-formula> 49.3mV/decade) with a wide range (<inline-formula> <tex-math notation="LaTeX">$10^{3}$ </tex-math></inline-formula>) of drain currentcompared to that without an IMG. The findings indicate that a high-performance GAA FET can be achieved by combining a DL channel, GAA NW, ferroelectric material, and an IMG.
format article
author Shen-Yang Lee
Chia-Chin Lee
Yi-Shan Kuo
Shou-Wei Li
Tien-Sheng Chao
author_facet Shen-Yang Lee
Chia-Chin Lee
Yi-Shan Kuo
Shou-Wei Li
Tien-Sheng Chao
author_sort Shen-Yang Lee
title Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate
title_short Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate
title_full Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate
title_fullStr Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate
title_full_unstemmed Ultrathin Sub-5-nm Hf&#x2081;&#x208B;<italic>&#x2093;</italic>Zr<italic>&#x2093;</italic>O&#x2082; for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate
title_sort ultrathin sub-5-nm hf&#x2081;&#x208b;<italic>&#x2093;</italic>zr<italic>&#x2093;</italic>o&#x2082; for a stacked gate-all-around nanowire ferroelectric fet with internal metal gate
publisher IEEE
publishDate 2021
url https://doaj.org/article/5ac82faab6e2474280122c96baced3f7
work_keys_str_mv AT shenyanglee ultrathinsub5nmhfx2081x208bitalicx2093italiczritalicx2093italicox2082forastackedgateallaroundnanowireferroelectricfetwithinternalmetalgate
AT chiachinlee ultrathinsub5nmhfx2081x208bitalicx2093italiczritalicx2093italicox2082forastackedgateallaroundnanowireferroelectricfetwithinternalmetalgate
AT yishankuo ultrathinsub5nmhfx2081x208bitalicx2093italiczritalicx2093italicox2082forastackedgateallaroundnanowireferroelectricfetwithinternalmetalgate
AT shouweili ultrathinsub5nmhfx2081x208bitalicx2093italiczritalicx2093italicox2082forastackedgateallaroundnanowireferroelectricfetwithinternalmetalgate
AT tienshengchao ultrathinsub5nmhfx2081x208bitalicx2093italiczritalicx2093italicox2082forastackedgateallaroundnanowireferroelectricfetwithinternalmetalgate
_version_ 1718420669248569344