A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
This paper investigates the unsupervised automatic feature extraction method with a large amount of unlabeled data for the fault diagnosis of rolling bearings in automobile production line, where the fault information is hard to identify due to the low-level features of a single category and the mas...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5bbc5421dfed4c67898e0a2af66bb1f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|