A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
This paper investigates the unsupervised automatic feature extraction method with a large amount of unlabeled data for the fault diagnosis of rolling bearings in automobile production line, where the fault information is hard to identify due to the low-level features of a single category and the mas...
Guardado en:
Autores principales: | Chuang Liang, Changzheng Chen, Ye Liu, Xinying Jia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5bbc5421dfed4c67898e0a2af66bb1f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm
por: Lanjun Wan, et al.
Publicado: (2021) -
Stacking Fault Energy Determination in Fe-Mn-Al-C Austenitic Steels by X-ray Diffraction
por: Jaime A. Castañeda, et al.
Publicado: (2021) -
Bayesian Deep Neural Network to Compensate for Current Transformer Saturation
por: Sopheap Key, et al.
Publicado: (2021) -
Rolling bearing fault detection based on vibration signal analysis and cumulative sum control chart
por: Mohammed Jawad Saja, et al.
Publicado: (2021) -
Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
por: Mingwei Wang, et al.
Publicado: (2020)