Combining data augmentation and domain information with TENER model for Clinical Event Detection
Abstract Background In recent years, with the development of artificial intelligence, the use of deep learning technology for clinical information extraction has become a new trend. Clinical Event Detection (CED) as its subtask has attracted the attention from academia and industry. However, directl...
Enregistré dans:
Auteurs principaux: | Zhichang Zhang, Dan Liu, Minyu Zhang, Xiaohui Qin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5c201c8ac7ca469c9e7989c205cf844d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
par: Saman Motamed, et autres
Publié: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
par: James A. Diao, et autres
Publié: (2021) -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
par: Sercan Ö. Arık, et autres
Publié: (2021) -
Biological data annotation via a human-augmenting AI-based labeling system
par: Douwe van der Wal, et autres
Publié: (2021) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
par: Dae Y. Kang, et autres
Publié: (2021)