On Rings of Weak Global Dimension at Most One
A ring <i>R</i> is of weak global dimension at most one if all submodules of flat <i>R</i>-modules are flat. A ring <i>R</i> is said to be arithmetical (resp., right distributive or left distributive) if the lattice of two-sided ideals (resp., right ideals or left...
Enregistré dans:
Auteur principal: | Askar Tuganbaev |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5c5cf4efd24047c2b07073b2729c4f6f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Generalizing unit-regular rings and special clean elements
par: Danchev,Peter V.
Publié: (2020) -
ON STRUCTURE AND COMMUTATIVITY OF NEAR - RINGS
par: ABUJABAL,H. A. S., et autres
Publié: (2000) -
Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
par: Danchev,Peter
Publié: (2012) -
Relative Gorenstein Dimensions over Triangular Matrix Rings
par: Driss Bennis, et autres
Publié: (2021) -
On centralizers of standard operator algebras with involution
par: Fošner,Maja, et autres
Publié: (2013)