Multitrait GWAS to connect disease variants and biological mechanisms.
Genome-wide association studies (GWASs) have uncovered a wealth of associations between common variants and human phenotypes. Here, we present an integrative analysis of GWAS summary statistics from 36 phenotypes to decipher multitrait genetic architecture and its link with biological mechanisms. Ou...
Enregistré dans:
Auteurs principaux: | Hanna Julienne, Vincent Laville, Zachary R McCaw, Zihuai He, Vincent Guillemot, Carla Lasry, Andrey Ziyatdinov, Cyril Nerin, Amaury Vaysse, Pierre Lechat, Hervé Ménager, Wilfried Le Goff, Marie-Pierre Dube, Peter Kraft, Iuliana Ionita-Laza, Bjarni J Vilhjálmsson, Hugues Aschard |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5c9ea5db0c81433a97c3f01fff044602 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs
par: Zihuai He, et autres
Publié: (2018) -
A genome-wide scan statistic framework for whole-genome sequence data analysis
par: Zihuai He, et autres
Publié: (2019) -
A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context
par: Apolline Gallois, et autres
Publié: (2019) -
Multitrait machine‐ and deep‐learning models for genomic selection using spectral information in a wheat breeding program
par: Karansher Sandhu, et autres
Publié: (2021) -
On quality control measures in genome-wide association studies: a test to assess the genotyping quality of individual probands in family-based association studies and an application to the HapMap data.
par: David W Fardo, et autres
Publié: (2009)