Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction
The capturing of high valent iron in a catalytic reaction is important but difficult task. Here, the authors report identification of a high-valent Fe(IV)-species with different spectroscopic tools such as Mössbauer spectroscopy and X-ray absorption spectroscopy during the course of an oxygen evolvi...
Saved in:
Main Authors: | Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/5d2b7906aefb4813a0bd6d81d04b73d0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides
by: Rodney D. L. Smith, et al.
Published: (2017) -
Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction
by: Jing Zhou, et al.
Published: (2020) -
Enhanced oxygen and hydrogen evolution reaction by zinc doping in cobalt–nickel sulfide heteronanorods
by: Jing Du, et al.
Published: (2021) -
Cobalt–Iron–Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline Seawater Electrolyzer
by: Chiho Kim, et al.
Published: (2021) -
Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides
by: Pengsong Li, et al.
Published: (2019)