Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data

Clustering cells based on similarities in gene expression is the first step towards identifying cell types in scRNASeq data. Here the authors incorporate biological knowledge into the clustering step to facilitate the biological interpretability of clusters, and subsequent cell type identification.

Guardado en:
Detalles Bibliográficos
Autores principales: Tian Tian, Jie Zhang, Xiang Lin, Zhi Wei, Hakon Hakonarson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/5d61bdf78def44fd9d00e5d1ec5fd2c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5d61bdf78def44fd9d00e5d1ec5fd2c2
record_format dspace
spelling oai:doaj.org-article:5d61bdf78def44fd9d00e5d1ec5fd2c22021-12-02T16:36:00ZModel-based deep embedding for constrained clustering analysis of single cell RNA-seq data10.1038/s41467-021-22008-32041-1723https://doaj.org/article/5d61bdf78def44fd9d00e5d1ec5fd2c22021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22008-3https://doaj.org/toc/2041-1723Clustering cells based on similarities in gene expression is the first step towards identifying cell types in scRNASeq data. Here the authors incorporate biological knowledge into the clustering step to facilitate the biological interpretability of clusters, and subsequent cell type identification.Tian TianJie ZhangXiang LinZhi WeiHakon HakonarsonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tian Tian
Jie Zhang
Xiang Lin
Zhi Wei
Hakon Hakonarson
Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
description Clustering cells based on similarities in gene expression is the first step towards identifying cell types in scRNASeq data. Here the authors incorporate biological knowledge into the clustering step to facilitate the biological interpretability of clusters, and subsequent cell type identification.
format article
author Tian Tian
Jie Zhang
Xiang Lin
Zhi Wei
Hakon Hakonarson
author_facet Tian Tian
Jie Zhang
Xiang Lin
Zhi Wei
Hakon Hakonarson
author_sort Tian Tian
title Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
title_short Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
title_full Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
title_fullStr Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
title_full_unstemmed Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
title_sort model-based deep embedding for constrained clustering analysis of single cell rna-seq data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5d61bdf78def44fd9d00e5d1ec5fd2c2
work_keys_str_mv AT tiantian modelbaseddeepembeddingforconstrainedclusteringanalysisofsinglecellrnaseqdata
AT jiezhang modelbaseddeepembeddingforconstrainedclusteringanalysisofsinglecellrnaseqdata
AT xianglin modelbaseddeepembeddingforconstrainedclusteringanalysisofsinglecellrnaseqdata
AT zhiwei modelbaseddeepembeddingforconstrainedclusteringanalysisofsinglecellrnaseqdata
AT hakonhakonarson modelbaseddeepembeddingforconstrainedclusteringanalysisofsinglecellrnaseqdata
_version_ 1718383635469434880